Gene Tree Labeling Using Nonnegative Matrix Factorization on Biomedical Literature

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene Tree Labeling Using Nonnegative Matrix Factorization on Biomedical Literature

Identifying functional groups of genes is a challenging problem for biological applications. Text mining approaches can be used to build hierarchical clusters or trees from the information in the biological literature. In particular, the nonnegative matrix factorization (NMF) is examined as one approach to label hierarchical trees. A generic labeling algorithm as well as an evaluation technique...

متن کامل

Automated Gene Classification using Nonnegative Matrix Factorization on Biomedical Literature

Understanding functional gene relationships is a challenging problem for biological applications. High-throughput technologies such as DNA microarrays have inundated biologists with a wealth of information, however, processing that information remains problematic. To help with this problem, researchers have begun applying text mining techniques to the biological literature. This work extends pr...

متن کامل

On Restricted Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is the problem of decomposing a given nonnegative n × m matrix M into a product of a nonnegative n × d matrix W and a nonnegative d × m matrix H. Restricted NMF requires in addition that the column spaces of M and W coincide. Finding the minimal inner dimension d is known to be NP-hard, both for NMF and restricted NMF. We show that restricted NMF is closel...

متن کامل

Document clustering using nonnegative matrix factorization

Amethodology for automatically identifying and clustering semantic features or topics in a heterogeneous text collection is presented. Textual data is encoded using a low rank nonnegative matrix factorization algorithm to retain natural data nonnegativity, thereby eliminating the need to use subtractive basis vector and encoding calculations present in other techniques such as principal compone...

متن کامل

Document clustering using nonnegative matrix factorization q

A methodology for automatically identifying and clustering semantic features or topics in a heterogeneous text collection is presented. Textual data is encoded using a low rank nonnegative matrix factorization algorithm to retain natural data nonnegativity, thereby eliminating the need to use subtractive basis vector and encoding calculations present in other techniques such as principal compon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Intelligence and Neuroscience

سال: 2008

ISSN: 1687-5265,1687-5273

DOI: 10.1155/2008/276535